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Abstract The spatially inhomogeneous order parameter considered in the h d a u  description 
of incommensurate phases is analysed from a Swctural viewpoint using the superspace 
approach. All modulation functions, including tbal of the order parameter, are defined along 
the internal space. Taking a displacive case for concreteness and within the constant-amplitude 
approximation. a general differential equation for the order p m e t e r  phase. B .  which generalizes 
the well known sinffiordon equation, is deived. No reference is made to any pmicular 
expression for the freeenergy expansion; only consistency arguments between ule Landau 
description and h e  s@uctural properties of an incommenswate phase are used. It is shown that, 
under certain qwte common conditions. this general equation CM be approximately reduced to the 
sine-(;or&n equation. The sine-Gordon equation can. therefore, be considered of &er general 
validity when modelling the s W c t m  of incommensurate phases irrespective of their pmicular 
thermodynamic potential. The introduction of the B modulation along the internal space further 
simplifies the equation; its parameten become system independent, being a function of only the 
soliton density. 

1. Introduction 

One of the most successful approaches to the analysis of incommensurate (IC) modulated 
phases is based on a generalization of the usual Landau theory [I]. In particular, its 
description of two sequential phase transitions limiting the stability range of an IC phase 
has been successfully applied to a great variety of systems [2-141. Below and not far from 
the phase transition into the IC phase, the system is described by a sinusoidal distortion, 
so that the position of every atom p varies in each cell I according to the displacement 
modulation 

(1) 
where Q is the order parameter amplitude, en is the polarization vector of the unstable 
mode and q~ i:s ixommensurate modulation wavevector, which in general is temperature 
dependent. For simplicity, we limit the discussion to one-dimensional modulations, 
i.e. modulations with a single rationally independent wave vector. Typically, a further 
decrease in temperature drives the system towards a new phase transition (the lock-in phase 
transition), after which the modulation Wavevector is locked into a simple rational value 
and, therefore, a shict crystalline state is recovered. As the lock-in transition is approached, 
the importance of higher-order harmonics, frozen together with the first harmonic (the 
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u(p, I )  = Q e p  exp(i2irqr . I )  + cc 
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order parameter), should increase [ 15, 161 and, consequently, the atomic modulations are 
expected to show increasingly anharmonic character. Instead of including higher harmonics 
in expressions such as (I), the usual approach to describe these anharmonic distortions is 
to use the lock-in phase as a reference 1171, i.e. the order parameter is defined locally, its 
homogeneous configuration corresponding to the lock-in commensurate phase. Thus, the 
state of the system in the IC phase is described by a modulation of the order parameter. 
Thus, the atomic displacements u(p, 1 )  are expressed as 

(2) 
Obviously, comparing (1) and (2), when the distortion is sinusoidal, the order parameter e([), so defined, is modulated in the form Q(l)  = Qexp(in6.  I ) ,  where 6 = qr - q ~ .  
If only long-wavelength variations in Q ( l )  are considered, a continuous approximation 
can be introduced for the order parameter along the modulation direction in real space: 
Q ( x )  = p(x)exp(i2xO(x)), so that in the sinusoidal regime p ( x )  = p ( x  independent) 
and O ( x )  = 6 x ,  for 6 = 6a'. A Landau potential is then constructed where invariant 
terms with x derivatives of the field Q ( x )  are included 1181. Under certain conditions, 
this Landau potential predicts the existence, previous to the lock-in phase, of a so-called 
soliton regime 115, 16, 191. The soliton regime is characterized by the coexistence of almost 
commensurate (lock-in) and IC regions. Phenomenologically this state is a consequence of 
the competition of two antagonistic terms present in the Landau free-energy expansion: the 
Lifshitz invariant [l] and a relatively low-order umklapp term that contributes to the lock-in 
energy. This scheme typically appears in the free energy of those compounds whose IC 
wavevector is far from the Brillouin zone centre. Typical examples are AzB& compounds 
[20, 211 which, together with many others, are usually classified as type4 compounds 1191. 
The order parameter phase O ( x )  progressively shows r identical steps, r being the number 
of possible distinct domains in the lock-in phase, e.g. r = 4 for (NH4)2BeF4 and r = 6 in 
KzSe04. Thus, the structure in the soliton regime is composed of periodic zones where the 
modulation wavevector is almost constant and equal to q ~ ,  limited by discommensurations 
where the modulation phase varies rapidly. Although, out of the sinusoidal regime, the 
order parameter amplitude p also becomes inhomogeneous, this inhomogeneity is typically 
very weak 14, 221 and can be neglected, reducing the Landau analysis to what is called the 
'constant-amplitude approximation'. Under this approximation, the temperature dependence 
of the inhomogeneous O ( x )  is controlled by the sine4ordon equation that is derived from 
the minimal Landau free-energy conditions [5,  6, 16, 20, 231. In this paper the term 'sine- 
Gordon equation' will refer to its first integral: 

u ( p ,  1 )  = Q ( l ) e p  exp(i2xq~.  I )  + CC. 

The parameters q (> 0) and ai (lull < q) are functions of some coefficients of the free 
energy expansion and the amplitude of the order parameter. Implicitly they depend on 6 
and, certainly, on temperature [20, 241. Solutions of (3) range from O = 6x (the sinusoidal 
regime) to step functions whose constant steps tend in the limiting case to have an infinite 
length, so that they represent macroscopic domains of the commensurate lock-in phase. 
The degree of anharmonicity in this continuous path from a sinusoidal to an ideal step 
function with infinite period is quantitatively described by the so-called 'soliton density' 
[19, 251 which measures the ratio of the width of the discommensurations and that of the 
commensurate steps. Introducing the parameter k = (21~1 I/(ao+luj I))'/' the soliton density 
is then given by 12.5, 201 ns = n / 2 K ( k ) ,  where K ( k )  is the complete elliptic integral of 
the first kind. In the sinusoidal regime, n, = 1 (k = 0) and in the ideal limit of the soliton 
regime n, = 0 (k = 1). 
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Traditionally, IC compounds without a Lifshitz invariant in its free-energy expansion 
seemed to have a completely different phenomenological description [7-14, 191 and, 
apparently, a similar soliton regime was not possible for them. That is the case for proper 
ferroelectrics such as NaNOz and thiourea, which belong to the group of type II materials. 
However, some conclusive x-ray diffraction results 1261 and a recent revision of previous 
theoretical approaches [27] have shown, at least in the case of thiourea, that the soliton 
regime is also present in type II compounds and can be modelled using the Landau theory. 
Moreover, the observed soliton regime was shown to be well described by the sineGordon 
differential equation (3) although the equation is not directly derived from the minimization 
of the Landau free energy. Hence, the difference between the behaviour of both types of 
IC smucture was reduced more to quantitative than to qualitative features. The sineGordon 
equation seemed to have a rather general validity independently of the particular form of 
the Landau potential. 

In this paper, we pretend to ascertain the validity limits of the sineGordon equation 
in the description of IC phases from a general viewpoint, as obtained when the usual 
order parameter definition is made consistent with an atomistic description of the structure. 
No Landau-type energy argument will be used. We shall derive the restrictions on the 
order parameter configuration that result from its necessary consistency with the structural 
properties of an IC structure and, therefore, are independent of any phenomenological 
theory. In particular, we demonstrate that, in general, the order parameter phase satisfies a 
differential equation that generalizes the s indordon  equation and can be reduced to this 
latter in certain cases, which may often be realized, independently of the expansion for the 
free-energy density relevant in each case. 

The superspace formalism [28, 291 is used in the analysis. A simple relation exists 
between the inhomogeneous configuration of the order parameter in physical space with 
the variation in the order parameter along the internal space introduced in the superspace 
description of IC smctures [28, 291. The description of the distortion by means of a 
modulation of the order parameter along the internal coordinate U instead of a continuous 
physical space variable x is shown to be much better suited to a consistent practical analysis. 
The form of the modulation and the modulation wavevector become uncoupled in this 
description, i.e. the differential equation governing the transformation of the modulation 
with temperature becomes formally independent of the value of the modulation wavevector, 
its solutions having a fixed period in internal space. 

2. Atomic modulation functions in the soliton regime 

In general, in an IC structure the atomic displacements with respect to a reference normal 
structure can be described by general modulations of the form 

Comparing (4) and (2). it is clear that equation (2) is restricting the distortion (4) to those 
Fourier components n, such that nqL is equivalent to qL and equation (4) can then be 
reduced to 

where the prime in the sum indicates that it is restricted to n such that nqL = qr .  Comparing 
again equation (5) and (Z), it is still necessary to assume the uniqueness of the polarization 
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vector for all harmonics 

U: = b,ep (6) 
These restrictions on the form of the atomic modulation correspond to the fact that the 
Landau model reduces the structural modulation to one having the symmetry of the order 
parameter, neglecting the presence of secondary modes with different symmetries. Using 
(5) and (6), the order parameter modulation can be expressed as 

Q(I) p ( 1 )  exp(i2irO(I)) = x ’ b .  exp(i2rm6.1) 
n 

(7) 

where p ( l )  and O(I) are real. 

periodic ‘atomic modulation functions’ u”(u) along the internal coordinate U [30]: 
In the superspace description, the discrete atomic displacement fields are substituted by 

so that u ( p ,  I) = u@(u = q, . 1).  It should he noted that the introduction of the internal 
coordinate v is not a continuous approximation; it is just a way of taking advantage of the 
incommensurateness of the vector 9,. so that each value of U within a period represents a 
certain cell in direct space. According to (6) and (S), we can write 

u’(u) = Q(u)e” +CC (9) 
where Q(u)  is defined as 

Q(u) = p(u)exp(iZnO(v)) = c ‘ b .  exp(i2nnu). (10) 

Comparing with (7), Q(1) = Q(u = 6 .  l ) ,  which is fully consistent with (8). by the 

(11) 

n 

property 

Q(u  + q L  . 1 )  = Q ( u )  exp(i2nq~.  I) 
which is ensured by the restriction on the sum in (10) [31]. Equation (9) can also be written 
in a more explicit form: 

= 2p(u) lecl C O S ( ~ Z ~ ( U )  + w:) (12) 
where Yf is the phase of the component 01 of the polarization vector e p .  

Equation (6) describes an important approximation for the structural features of IC 
phases which is hidden in their usual Landau description. Obviously, this approximation 
makes sense only when 8 is small in comparison with the typical scale of variation within 
the Brillouin zone of the mode polarization vectors and, in addition, very high harmonics 
in the modulation are negligible, which is the situation usually assumed when a continuous 
approximation in real space is introduced for the order parameter modulation. 

3. Sine-Gordon equation in internal space 

According to (7) and (lo), the amplitude and phase of the order parameter along the internal 
space, p ( u )  and @(U), coincide with the functions p ( x )  and O ( x )  considered in the usual 
continuous approximation for direct space [20,22], except for a temperature-dependent scale 
factor 8-I between both continuous variables. This simple relation, however, should not 
conceal the very different interpretations of the two descriptions. The space of the coordinate 
U is an adimensional phase space, and the functions p ( u )  and O(u) are well defined 
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whatever configuration the order parameter Q(2) may take; no continuous approximation 
is required for their definition and they always have a clear microscopic meaning given by 
the equations above. In contrast with the real space functions, the functions p(u) and e(u) 
are periodic with period 1, their period being uncorrelated with the modulation wavevector 
and its possible temperature variation. If the phase configuration satisfies the sine-Gordon 
equation, as the period of the function along U is necessarily 1, the corresponding coefficients 
ao and a1 in the sine-Gordon equation (see equation (3)) satisfy the additional condition 
(&+ la1 1)”’ = 2K(k)/z, where k is the parameter defined in section 1. Consequently, the 
sindiordon equation can be written in the form 

or 

[l -k2sinz (k:)] i f a j  > 0 
4 

where the dot represents the derivative with respect to the internal coordinate. Hence, O(u) 
i s  completely determined by k or n,. 

1 

U 0  

-1 
0 0.2 0.4 0.6 0.8 1 

V 
Figure 1. Example of the atomic modulation function U(“) for r = 4 and a strong soliton 
density. The broken line corresponds to the sinusoidal regime. 

Note that in the sinusoidal regime, when only a single first term n = 1 exists in the 
right-hand side of equation (10). e(u) = U, which is a trivial solution of equation (13) for 
k = 0 (n, = 1 ) .  In figure 1 we present the effect of the function e(u) solution of equation 
(13a) for r = 4 and n, = 0.2 (k = 0.999999) on a particular atomic modulation function 
according to (12). It is important to note that in contrast with the function e ( x )  in real space 
the width of the discommensurations in internal space goes to zero when the l i t  of the 
soliton regime (k = 1, n, = 0) is approached. The finiteness of the discommensurations in 
real space in the usual Landau description is preserved by the simultaneous blow-up of the 
scale factor 8-’ as the lock-in limit is approached. 
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4. Generalization of the sine-Gordon equaiion 

If tqr ( t  integer) equals a reciprocal-lattice vector of the normal phase, the Fourier series 
(3, (7), (8) and (10) are restricted to values of n such that n = mt + 1 (m E Z). However, 
condition (6) contains an implicit additional restriction on the possible Fourier terms in 
equation (10). The Fourier amplitudes fflf for different atom and a fixed n are symmetry 
related according to the superspace group of the smcture. As n increases, these symmetry 
relations differ in general for different values of n in a cyclic way. As mentioned above, (6) 
implies the same symmetry relation for all terms in the sum (i.e. the symmetry of the order 
parameter). Therefore, the set of possible values n in the sum will in general be reduced 
to a subset of those mentioned above, typically n = m r  + 1 with r being a multiple o f t  
(it corresponds, as seen below, to the number of possible distinct commensurate domains 
in the lock-in phase, or steps in the order parameter phase). Hence, taking into account 
equation (lo), this implies that: 

r 
while the period of p(u) is l / r .  

For simplicity, we shall restrict our considerations now to the case of IC phases with a 
superspace group containing at least one rotational operation that transforms q I  into -qI. 
as it happens in all experimental cases. Under this condition, once the arbitrary phase of 
bl (the phason degree of freedom in the structure [32, 331) is set to zero, the rest of the 
coefficients 6, (n 1) should also be real to keep this superspace symmetry operation. 
If the coefficients b. are real and we neglect the v-dependence of the order parameter 
amplitude, equation (10) yields 

(15) 

On the other hand, from (10) and also within the constant-amplitude approximation, it can 
be easily derived that 

8’ = & + c d k  cos(2nkru). 
0 1  

Comparing (16) and (15). it is then clear that, in general, we can expect that the function 
e(u) satisfies the differential equation 

8* = a0 + a1 cos(2zre) + u2cos(w2r)e)  + u,cos(~x(3r )~)  + . . . . (17) 
This equation is a generalization of the sineGordon equation resulting from the usual 
Landau approach for type I materials. It has been derived from the consistent definition of 
the order parameter phase e(u) in microscopic terms without any appeal to Landau energy 
arguments. It can therefore be considered to have general validity for any IC material, so 
long as the constant-amplitude approximation is satisfactory. 

# 0. However, the particular case 
qr. = 0 corresponding, for instance, to thiourea or sodium nitrite is not very different. 
Although, in this case, the actual polarization vector of the order parameter distortion is 
real, the complex expressions used can be maintained, if the polarization vector considered 
in equation (6) is the complex eigenvector corresponding to q I .  The harmonics summed 
up in the first tmm of (5) are, then, all positive integers nr + 1. The polarization vector 
is in this case a linear combination of the order parameter mode at q, = 0 and the mode 
with which is coupled at q, # 0 1271. A similar situation will happen when qL lies on the 
border of the Brillouin zone. 

In the above derivation we have assumed that 
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FIgure 2 Function AO(v) in a generic period [O. l/r]: - - -, limit case of null soliton densiiy 
(equation (190)); -, solution of the sinffiordon equalion (essentially a sinusoidal function) 
for a soliton density n, = 0.6. 

From (lo), it is straightforward that e ( v )  should be odd and, therefore, the function 
Ae(u) defined as e ( u )  - U, which according to (14) has period l/r, is in general given by 
the Fourier series 

(18) 

Obviously, the sinusoidal case corresponds to Ae(v) = 0, ck = 0 for all k. On the other 
hand, in the extreme limit of a soliton regime, where the order parameter phase forms along 
the intemal space r equal-spaced discontinuous steps with an increase of l / r  in each one, 
Ae(u) should exhibit a sawtooth shape (figure 2) and its coefficients Ck in (18 )  would be 

1 
Ck = -. 

krrr 
The two configurations (19) differ basically in the situation of the point U = 0 either in 
the middle of a discontinuous step (CI > 0) or in the middle of a constant-phase region 
(cI c 0). Equation (19a) corresponds to the case with the order parameter phase taking the 
values n / r  (n  = 0 , .  . . , r - 1) in the r possible domains of the commensurate phase, while 
the case (19b) represents the situation when the commensurate domains are associated with 
the phase values n / r  + 1/2r for the order parameter. Both the sinusoidal configuration and 
the soliton limit (19) are trivial solutions of the sine-Gordon equation (U, = 0, n t 1, in 
equation (17)). In the latter case, ao la] I and is very large, with a, negative and positive, 
respectively (see equations (13)). 

According to the demonstration above, in a more general situation, @(U) satisfies an 
equation of the type (17). The concept of soliton density originally introduced for the 
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0 V do 
Figum 3. Schematic representation of the criterion used 10 define the relalive width of the 
discommensurations in the internal space for a general regime (n. # 0). 

sine-ciordon equation can also be extended to this general equation. The soliton density 
measures the volume fraction of the sample occupied by discommensurations, and can be 
defined [ZO] as wojdo, W O  being the discommensuration width and do the distance between 
two consecutive discommensurations. According to the periodicity of Ae(u), & = l / r .  
On the other hand, since the stepping of 6 is only exact in the limit, the width of the 
discommensurations is not in general unambiguous and depends on its definition. Assuming 
a single maximum of 6 in each discommensuration, a simple criterion [ZO, 341 consists in 
substituting the quasi-commensurate regions by strict plateaux of width & - W O  and the IC 
zones by straight lines having a slope equal to the maximum value of 4 (see figure 3). As 
the B steps have a value of l j r ,  the width wg is then given by l/(rd-) and accordingly, 
n, = 1/6-. Hence, for a general configuration satisfying (17) the soliton density could be 
expressed as 

1 
n, = (20) 

duo+ lull - lazl+ la31 + ...+(-lp+1la"l +... 
or, equivalently, in terms of the Fourier amplitudes in (18) 

(21) 
1 

n, = 
1+2nrIlcll+21c~l+31~31+ . . .+ nlc.l+ ... 1' 

These general expressions coincide with the usual definition when equation (17) is 
constrained to be the sine-ciordon equation. 

5. Approximate validity of the sine-Gordon equation 

Near the sinusoidal regime, one can expect that the first corrections to the sinusoidal 
configuration should come from the harmonics of next lowest order, i.e. n = r + 1 and 
n = -r + 1. It can be shown, comparing equations (10) and (18). that the amplitude of these 
harmonics is linearly related to the value of c~ in equation (18). while their contribution to the 
other terms in the series is quadratic or higher. Hence, we can expect in a wide temperature 
range close to the sinusoidal regime (so long as the appearance of higher harmonics is not 
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significant) that the Fourier series (18) is limited to a single term, i.e. c1 # O,c, x 0 for 
n t 1 (see figure 2).  On the other hand, one can easily check that a single harmonic for 
the function AtYu) is a good approximation for the solution of the sinffiordon equation 
up to soliton densities of the order of 0.6 (see figure 2).  As the temperature is furthered 
lowered, new harmonics in (18) are bound to appear (CX # 0, k t I), but a weight hierarchy 
will be kept so long as the values of the order parameter harmonics in (IO) also follow 
a rapidly decreasing law with their order. Deviations from the s indordon  equation are 
then expected, but these should again become negligible if the system further approaches 
the soliton limit mentioned above. We can assume that the ratios of the Fourier amplitudes 
ck in thii limiting soliton configuration are an upper bound, so that for any intermediate 
configuration nlc.1 > mlc,l if m > n, while the signs of the coefficients ck follow the same 
rules as in the soliton limit (see equations (19)). Provided that the previous inequality is 
satisfied and using equations (15) and (17), the following approximate expressions for the 
first four coefficients ai i n  (17) in terms of the amplitudes CA can be obtained: 

a0 = 1 + 6nZrZc: + . . . 
a1 = 4rrrcl + 28n2rzc,c2 - 2n3r3c; + , . , 
a2 = -2rr r c, + 8nrcz + 52n2r2cl c3 . , , 
a3 = 2n3r3c: - 1 2 n ~ r ~ c l c 2  + . . . . 

a0 > 0 

2 2 2  

Therefore, only a very reduced number of coefficients ai in (17) will have a non-negligible 
value. The sineGordon equation, even though it is not the most general differential equation 
for the phase, will constitute a good first approximation of the real differential equation for 
e w .  

6. Conclusions 

Independently of any actual energy calculations in the framework of the Landau theory, 
the sinecordon equation (13) is expected to be a good approximation of the general 
equation (17) in significant temperature ranges even for type I1 compounds. The sine- 
Gordon equation acquires a much simpler form when defined in internal space, where it is 
paramebized using only the soliton density. 

Although the sinffiordon equation has been systematically considered in the 
thermodynamic description of IC phases, it has never been used in the structural analysis 
of them (except for the early attempt of Yamada er al [35]). These results open up new 
perspectives in this field. Equations of the type of equation (12) can be used to model the 
structure of IC materials. The phase @(U) in these equations is expected to satisfy one of 
the sinffiordon equations (13), and this constraint can be introduced into the structural 
refinement. The eventual success of such a refinement not only will confirm the validity of 
the sinffiordon equation but also will yield an experimental value of the soliton density 
in the structure. 
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